[−][src]Struct syn::parse::ParseBuffer
Cursor position within a buffered token stream.
This type is more commonly used through the type alias ParseStream
which
is an alias for &ParseBuffer
.
ParseStream
is the input type for all parser functions in Syn. They have
the signature fn(ParseStream) -> Result<T>
.
Methods
impl<'a> ParseBuffer<'a>
[src]
impl<'a> ParseBuffer<'a>
pub fn parse<T: Parse>(&self) -> Result<T>
[src]
pub fn parse<T: Parse>(&self) -> Result<T>
Parses a syntax tree node of type T
, advancing the position of our
parse stream past it.
pub fn call<T>(&self, function: fn(_: ParseStream) -> Result<T>) -> Result<T>
[src]
pub fn call<T>(&self, function: fn(_: ParseStream) -> Result<T>) -> Result<T>
Calls the given parser function to parse a syntax tree node of type T
from this stream.
Example
The parser below invokes Attribute::parse_outer
to parse a vector of
zero or more outer attributes.
#[macro_use] extern crate syn; use syn::{Attribute, Ident}; use syn::parse::{Parse, ParseStream, Result}; // Parses a unit struct with attributes. // // #[path = "s.tmpl"] // struct S; struct UnitStruct { attrs: Vec<Attribute>, struct_token: Token![struct], name: Ident, semi_token: Token![;], } impl Parse for UnitStruct { fn parse(input: ParseStream) -> Result<Self> { Ok(UnitStruct { attrs: input.call(Attribute::parse_outer)?, struct_token: input.parse()?, name: input.parse()?, semi_token: input.parse()?, }) } }
pub fn peek<T: Peek>(&self, token: T) -> bool
[src]
pub fn peek<T: Peek>(&self, token: T) -> bool
Looks at the next token in the parse stream to determine whether it matches the requested type of token.
Does not advance the position of the parse stream.
Syntax
Note that this method does not use turbofish syntax. Pass the peek type inside of parentheses.
input.peek(Token![struct])
input.peek(Token![==])
input.peek(Ident)
input.peek(Lifetime)
input.peek(token::Brace)
Example
In this example we finish parsing the list of supertraits when the next
token in the input is either where
or an opening curly brace.
#[macro_use] extern crate syn; use syn::{token, Generics, Ident, TypeParamBound}; use syn::parse::{Parse, ParseStream, Result}; use syn::punctuated::Punctuated; // Parses a trait definition containing no associated items. // // trait Marker<'de, T>: A + B<'de> where Box<T>: Clone {} struct MarkerTrait { trait_token: Token![trait], ident: Ident, generics: Generics, colon_token: Option<Token![:]>, supertraits: Punctuated<TypeParamBound, Token![+]>, brace_token: token::Brace, } impl Parse for MarkerTrait { fn parse(input: ParseStream) -> Result<Self> { let trait_token: Token![trait] = input.parse()?; let ident: Ident = input.parse()?; let mut generics: Generics = input.parse()?; let colon_token: Option<Token![:]> = input.parse()?; let mut supertraits = Punctuated::new(); if colon_token.is_some() { loop { supertraits.push_value(input.parse()?); if input.peek(Token![where]) || input.peek(token::Brace) { break; } supertraits.push_punct(input.parse()?); } } generics.where_clause = input.parse()?; let content; let empty_brace_token = braced!(content in input); Ok(MarkerTrait { trait_token: trait_token, ident: ident, generics: generics, colon_token: colon_token, supertraits: supertraits, brace_token: empty_brace_token, }) } }
pub fn peek2<T: Peek>(&self, token: T) -> bool
[src]
pub fn peek2<T: Peek>(&self, token: T) -> bool
Looks at the second-next token in the parse stream.
This is commonly useful as a way to implement contextual keywords.
Example
This example needs to use peek2
because the symbol union
is not a
keyword in Rust. We can't use just peek
and decide to parse a union if
the very next token is union
, because someone is free to write a mod union
and a macro invocation that looks like union::some_macro! { ... }
. In other words union
is a contextual keyword.
#[macro_use] extern crate syn; use syn::{Ident, ItemUnion, Macro}; use syn::parse::{Parse, ParseStream, Result}; // Parses either a union or a macro invocation. enum UnionOrMacro { // union MaybeUninit<T> { uninit: (), value: T } Union(ItemUnion), // lazy_static! { ... } Macro(Macro), } impl Parse for UnionOrMacro { fn parse(input: ParseStream) -> Result<Self> { if input.peek(Token![union]) && input.peek2(Ident) { input.parse().map(UnionOrMacro::Union) } else { input.parse().map(UnionOrMacro::Macro) } } }
pub fn peek3<T: Peek>(&self, token: T) -> bool
[src]
pub fn peek3<T: Peek>(&self, token: T) -> bool
Looks at the third-next token in the parse stream.
pub fn parse_terminated<T, P: Parse>(
&self,
parser: fn(_: ParseStream) -> Result<T>
) -> Result<Punctuated<T, P>>
[src]
pub fn parse_terminated<T, P: Parse>(
&self,
parser: fn(_: ParseStream) -> Result<T>
) -> Result<Punctuated<T, P>>
Parses zero or more occurrences of T
separated by punctuation of type
P
, with optional trailing punctuation.
Parsing continues until the end of this parse stream. The entire content
of this parse stream must consist of T
and P
.
Example
#[macro_use] extern crate syn; use syn::{token, Ident, Type}; use syn::parse::{Parse, ParseStream, Result}; use syn::punctuated::Punctuated; // Parse a simplified tuple struct syntax like: // // struct S(A, B); struct TupleStruct { struct_token: Token![struct], ident: Ident, paren_token: token::Paren, fields: Punctuated<Type, Token![,]>, semi_token: Token![;], } impl Parse for TupleStruct { fn parse(input: ParseStream) -> Result<Self> { let content; Ok(TupleStruct { struct_token: input.parse()?, ident: input.parse()?, paren_token: parenthesized!(content in input), fields: content.parse_terminated(Type::parse)?, semi_token: input.parse()?, }) } }
pub fn is_empty(&self) -> bool
[src]
pub fn is_empty(&self) -> bool
Returns whether there are tokens remaining in this stream.
This method returns true at the end of the content of a set of delimiters, as well as at the very end of the complete macro input.
Example
#[macro_use] extern crate syn; use syn::{token, Ident, Item}; use syn::parse::{Parse, ParseStream, Result}; // Parses a Rust `mod m { ... }` containing zero or more items. struct Mod { mod_token: Token![mod], name: Ident, brace_token: token::Brace, items: Vec<Item>, } impl Parse for Mod { fn parse(input: ParseStream) -> Result<Self> { let content; Ok(Mod { mod_token: input.parse()?, name: input.parse()?, brace_token: braced!(content in input), items: { let mut items = Vec::new(); while !content.is_empty() { items.push(content.parse()?); } items }, }) } }
pub fn lookahead1(&self) -> Lookahead1<'a>
[src]
pub fn lookahead1(&self) -> Lookahead1<'a>
Constructs a helper for peeking at the next token in this stream and building an error message if it is not one of a set of expected tokens.
Example
#[macro_use] extern crate syn; use syn::{ConstParam, Ident, Lifetime, LifetimeDef, TypeParam}; use syn::parse::{Parse, ParseStream, Result}; // A generic parameter, a single one of the comma-separated elements inside // angle brackets in: // // fn f<T: Clone, 'a, 'b: 'a, const N: usize>() { ... } // // On invalid input, lookahead gives us a reasonable error message. // // error: expected one of: identifier, lifetime, `const` // | // 5 | fn f<!Sized>() {} // | ^ enum GenericParam { Type(TypeParam), Lifetime(LifetimeDef), Const(ConstParam), } impl Parse for GenericParam { fn parse(input: ParseStream) -> Result<Self> { let lookahead = input.lookahead1(); if lookahead.peek(Ident) { input.parse().map(GenericParam::Type) } else if lookahead.peek(Lifetime) { input.parse().map(GenericParam::Lifetime) } else if lookahead.peek(Token![const]) { input.parse().map(GenericParam::Const) } else { Err(lookahead.error()) } } }
pub fn fork(&self) -> Self
[src]
pub fn fork(&self) -> Self
Forks a parse stream so that parsing tokens out of either the original or the fork does not advance the position of the other.
Performance
Forking a parse stream is a cheap fixed amount of work and does not involve copying token buffers. Where you might hit performance problems is if your macro ends up parsing a large amount of content more than once.
// Do not do this. if input.fork().parse::<Expr>().is_ok() { return input.parse::<Expr>(); }
As a rule, avoid parsing an unbounded amount of tokens out of a forked parse stream. Only use a fork when the amount of work performed against the fork is small and bounded.
For a lower level but occasionally more performant way to perform
speculative parsing, consider using ParseStream::step
instead.
Example
The parse implementation shown here parses possibly restricted pub
visibilities.
pub
pub(crate)
pub(self)
pub(super)
pub(in some::path)
To handle the case of visibilities inside of tuple structs, the parser needs to distinguish parentheses that specify visibility restrictions from parentheses that form part of a tuple type.
struct S(pub(crate) A, pub (B, C));
In this example input the first tuple struct element of S
has
pub(crate)
visibility while the second tuple struct element has pub
visibility; the parentheses around (B, C)
are part of the type rather
than part of a visibility restriction.
The parser uses a forked parse stream to check the first token inside of
parentheses after the pub
keyword. This is a small bounded amount of
work performed against the forked parse stream.
#[macro_use] extern crate syn; use syn::{token, Ident, Path}; use syn::ext::IdentExt; use syn::parse::{Parse, ParseStream, Result}; struct PubVisibility { pub_token: Token![pub], restricted: Option<Restricted>, } struct Restricted { paren_token: token::Paren, in_token: Option<Token![in]>, path: Path, } impl Parse for PubVisibility { fn parse(input: ParseStream) -> Result<Self> { let pub_token: Token![pub] = input.parse()?; if input.peek(token::Paren) { let ahead = input.fork(); let mut content; parenthesized!(content in ahead); if content.peek(Token![crate]) || content.peek(Token![self]) || content.peek(Token![super]) { return Ok(PubVisibility { pub_token: pub_token, restricted: Some(Restricted { paren_token: parenthesized!(content in input), in_token: None, path: Path::from(content.call(Ident::parse_any)?), }), }); } else if content.peek(Token![in]) { return Ok(PubVisibility { pub_token: pub_token, restricted: Some(Restricted { paren_token: parenthesized!(content in input), in_token: Some(content.parse()?), path: content.call(Path::parse_mod_style)?, }), }); } } Ok(PubVisibility { pub_token: pub_token, restricted: None, }) } }
pub fn error<T: Display>(&self, message: T) -> Error
[src]
pub fn error<T: Display>(&self, message: T) -> Error
Triggers an error at the current position of the parse stream.
Example
#[macro_use] extern crate syn; use syn::Expr; use syn::parse::{Parse, ParseStream, Result}; // Some kind of loop: `while` or `for` or `loop`. struct Loop { expr: Expr, } impl Parse for Loop { fn parse(input: ParseStream) -> Result<Self> { if input.peek(Token![while]) || input.peek(Token![for]) || input.peek(Token![loop]) { Ok(Loop { expr: input.parse()?, }) } else { Err(input.error("expected some kind of loop")) } } }
pub fn step<F, R>(&self, function: F) -> Result<R> where
F: for<'c> FnOnce(StepCursor<'c, 'a>) -> Result<(R, Cursor<'c>)>,
[src]
pub fn step<F, R>(&self, function: F) -> Result<R> where
F: for<'c> FnOnce(StepCursor<'c, 'a>) -> Result<(R, Cursor<'c>)>,
Speculatively parses tokens from this parse stream, advancing the position of this stream only if parsing succeeds.
This is a powerful low-level API used for defining the Parse
impls of
the basic built-in token types. It is not something that will be used
widely outside of the Syn codebase.
Example
use proc_macro2::TokenTree; use syn::parse::{ParseStream, Result}; // This function advances the stream past the next occurrence of `@`. If // no `@` is present in the stream, the stream position is unchanged and // an error is returned. fn skip_past_next_at(input: ParseStream) -> Result<()> { input.step(|cursor| { let mut rest = *cursor; while let Some((tt, next)) = rest.token_tree() { match tt { TokenTree::Punct(ref punct) if punct.as_char() == '@' => { return Ok(((), next)); } _ => rest = next, } } Err(cursor.error("no `@` was found after this point")) }) }
pub fn cursor(&self) -> Cursor<'a>
[src]
pub fn cursor(&self) -> Cursor<'a>
Provides low-level access to the token representation underlying this parse stream.
Cursors are immutable so no operations you perform against the cursor will affect the state of this parse stream.
Trait Implementations
impl<'a> Drop for ParseBuffer<'a>
[src]
impl<'a> Drop for ParseBuffer<'a>
impl<'a> Display for ParseBuffer<'a>
[src]
impl<'a> Display for ParseBuffer<'a>
impl<'a> Debug for ParseBuffer<'a>
[src]
impl<'a> Debug for ParseBuffer<'a>
Auto Trait Implementations
impl<'a> !Send for ParseBuffer<'a>
impl<'a> !Send for ParseBuffer<'a>
impl<'a> !Sync for ParseBuffer<'a>
impl<'a> !Sync for ParseBuffer<'a>
Blanket Implementations
impl<T> ToString for T where
T: Display + ?Sized,
[src]
impl<T> ToString for T where
T: Display + ?Sized,
impl<T> From for T
[src]
impl<T> From for T
impl<T, U> Into for T where
U: From<T>,
[src]
impl<T, U> Into for T where
U: From<T>,
impl<T, U> TryFrom for T where
T: From<U>,
[src]
impl<T, U> TryFrom for T where
T: From<U>,
type Error = !
try_from
)The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
impl<T> Borrow for T where
T: ?Sized,
[src]
impl<T> Borrow for T where
T: ?Sized,
impl<T> Any for T where
T: 'static + ?Sized,
[src]
impl<T> Any for T where
T: 'static + ?Sized,
fn get_type_id(&self) -> TypeId
[src]
fn get_type_id(&self) -> TypeId
impl<T> BorrowMut for T where
T: ?Sized,
[src]
impl<T> BorrowMut for T where
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T
[src]
fn borrow_mut(&mut self) -> &mut T
impl<T, U> TryInto for T where
U: TryFrom<T>,
[src]
impl<T, U> TryInto for T where
U: TryFrom<T>,